RELEVANCE OF AERODYNAMICS OF GROUND VEHICLES

Researcher: Rickey Johnson Advisor: Mr. Francis Mack Harris-Stowe State University

OBJECTIVE

- The initial investigation reviews the relationship of the coefficient of drag and the resulting aerodynamic horsepower required to overcome air resistance.
- The cars I used in my research are the: 2013 Nissan Leaf, 2013 Mitsubishi Eclipse, 2006 Acura TL, 2006 Thunderbird, 2013 Chevy Volt, 2007 BMW 330i, 2013 Toyota Prius.

HISTORY

 Vehicles in the past were not very aerodynamic mainly because there was no focus on being fast or efficient.

- This is backed by the first car designed with aerodynamics involved not being the trend at the time
- One on these cars in the 1900's were the Rumpler-Tropfenauto, which translates into "tear-drop car".

BACKGROUND

- My research is important because cars are not stable at any great speed if not well designed aerodynamically.
- Aerodynamics affect a car as soon as 10 mph and can completely take over by 35mph.
- In a larger context, vehicles respond in various ways on the road based on total design and not just based on the horse power available in the vehicle.
- Aerodynamic stability of a vehicle is important for safety and gas mileage.

METHODS $F_d = c_d \ 1/2 \ \rho \ v^2 \ A$

(1)

where

 $F_d = drag \ force \ (N)$

 $c_d = drag \ coefficient$

- ρ = Density of fluid (1.2 kg/m³ for air at <u>NTP</u>)
- v = flow velocity (m/s)
- A = characteristic frontal area of the body (m²)

The force required to overcome air resistance for a normal family car with drag coefficient 0.29 and frontal area $2 m^2$ in 90 km/h can be calculated as:

 $F_d = 0.29 \ 1/2 \ (1.2 \ kg/m^3) \ ((90 \ km/h) \ (1000 \ m/km) \ / \ (3600 \ s/h))^2 \ (2 \ m^2) = 217.5 \ N$

RESULTS

- This spreadsheet represents all the variables used in my research to calculate aerodynamic horsepower for a particular vehicle.
- I found my data from sources online that had the frontal area of the vehicles I chose.
- I analyzed seven cars of different makes and models, including luxury, sport, and ecofriendly models.
- With a bar simple bar graph I sorted my results by the drag coefficients to see if there were any irregularities.

RESULTS

/ehicle Type or Aero Shape	Frontal Area A	ft²	m²	A (m²)	Drag Coeff C _d	Drag Area C _d x m ²	Drag Area C _d x ft²	Air Density ρ (kg/m³)	Velocity V	mi/hr	km/hr	Velocity V (km/hr)	Drag Force F _d (N)	Drag Force F _d (Ibs)	Aerodyna Power Reqd (KW)	Aerodyna Power Reqd (hp)
Chevy Volt	23.70	1		2.20	0.28	0.62	6.64	1.2	80.0	1		128.8	474.0	106.6	17.0	22.7
Nissan Leaf	24.50	1		2.28	0.32	0.73	7.84	1.2	80.0	1		128.8	560.0	126.0	20.0	26.9
Toyota Prius	23.90	1		2.22	0.26	0.58	6.21	1.2	80.0	1		128.8	443.8	99.9	15.9	21.3
Acura TL	20.80	1		1.93	0.32	0.62	6.66	1.2	80.0	1		128.8	475.4	107.0	17.0	22.8
BMW 3301	23.36	1		2.17	0.27	0.59	6.31	1.2	80.0	1		128.8	450.5	101.4	16.1	21.6
Motsubishi Eclipse Gts	20.40	1		1.90	0.35	0.66	7.14	1.2	80.0	1		128.8	510.0	114.7	18.2	24.5
Thunderbird	21.40	1		1.99	0.31	0.62	6.63	1.2	80.0	1		128.8	473.8	106.6	17.0	22.7

DRAG COEFFICIENT VS. AERODYNAMIC HORSEPOWER

FUTURE RESEARCH

- Other factors I intend to look into are: friction, surface area, vehicle weight.
- Original intended research was to observe how aerodynamic extensions such as spoilers affect aerodynamic performance.

PRIUS ANALYSIS

- While researching the Toyota Prius, I found that its hatchback style is significant in why the car is gives good aerodynamic performance.
- If the hatch angle is correct, the airflow will be more laminar as it moves over the back of the car. This reduces vortices, turbulence, and drag.

PRIUS ANALYSIS CONT.

- Hatchback cars are a contradiction to the main premises we proposed earlier in our research.
- •This is interesting because the most aerodynamic style should be the teardrop shape, which a Prius doesn't use.

SPOILER RESEARCH

- Over the past week I have been tasked to look for the lift coefficient for a spoiler.
- During this time, I have researched several sources that highlight the fact that spoilers add to the drag coefficient, and reduce the lift coefficient.
- That is reasonable because a spoiler would add more weight and more drag to the car.
- If the intention is more speed, then minimizing unnecessary weight is usually the best approach.
- However, when the vehicle reaches a particular speed, a spoiler provides useful stability with the added drag and reduced lift.
- Knowing this, we can expect our lift to be substantially less than our drag.

SPOILER RESEARCH CONT.

• This picture illustrates how a spoiler works when attached to a vehicle.

•It adds weight and also reduces lift.

CONCLUSION

- From the spreadsheet, I found that from sorting based on drag coefficients, all of the horsepower results came in numerical order except for the Nissan Leaf.
- Based on aerodynamic horse power required, the Leaf was the least aerodynamic even though it had a drag coefficient that was less than or equal to two others.
- •I have found that a car that has the shape of a hatch back has an air void in the back that catches air the way a spoiler would, thereby reducing drag and possibly lift.

ACKNOWLEDGEMENT

This research was supported by the NSF HBCU-UP Implementation Grant HRD-0811219

> Dr. Dwyane Smith

Provost & Vice President for Academic Affairs Harris-Stowe State University Principal Investigator for this grant

> Dr. Tommie Turner

Director institute for Science and Mathematics Harris-Stowe State University

> Mr. Francis Mack

Research Advisor Harris-Stowe State University

REFERENCES

- http://www.carstyling.ru/en/car/1921_rumpler_tropfenwagen/images/17472
- https://www.smmt.co.uk/2016/10/feature-the-importance-of-aerodynamicsin-commercial-vehicles/
- https://www.howacarworks.com/technology/car-aerodynamics
- <u>https://www.engineeringtoolbox.com/drag-coefficient-d_627.html</u>
- http://www.autospeed.com/cms/article.html?&title=Low-Drag-Car-Aerodynamics&A=112609